GA-ANFIS Expert System Prototype for Prediction of Dermatological Diseases
نویسندگان
چکیده
This paper presents novel GA-ANFIS expert system prototype for dermatological disease detection by using dermatological features and diagnoses collected in real conditions. Nine dermatological features are used as inputs to classifiers that are based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for the first level of fuzzy model optimization. After that, they are used as inputs in Genetic Algorithm (GA) for the second level of fuzzy model optimization within GA-ANFIS system. GA-ANFIS system performs optimization in two steps. Modelling and validation of the novel GA-ANFIS system approach is performed in MATLAB environment by using validation set of data. Some conclusions concerning the impacts of features on the detection of dermatological diseases were obtained through analysis of the GA-ANFIS. We compared GA-ANFIS and ANFIS results. The results confirmed that the proposed GA-ANFIS model achieved accuracy rates which are higher than the ones we got by ANFIS model.
منابع مشابه
Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملFEASIBILITY OF PSO-ANFIS-PSO AND GA-ANFIS-GA MODELS IN PREDICTION OF PEAK GROUND ACCELERATION
In the present study, two new hybrid approaches are proposed for predicting peak ground acceleration (PGA) parameter. The proposed approaches are based on the combinations of Adaptive Neuro-Fuzzy System (ANFIS) with Genetic Algorithm (GA), and with Particle Swarm Optimization (PSO). In these approaches, the PSO and GA algorithms are employed to enhance the accuracy of ANFIS model. To develop hy...
متن کاملA Novel Fuzzy-Genetic Differential Evolutionary Algorithm for Optimization of A Fuzzy Expert Systems Applied to Heart Disease Prediction
This study presents a novel intelligent Fuzzy Genetic Differential Evolutionary model for the optimization of a fuzzy expert system applied to heart disease prediction in order to reduce the risk of heart disease. To this end, a fuzzy expert system has been proposed for the prediction of heart disease. The proposed model can be used as a tool to assist physicians. In order to: (1) tune the para...
متن کاملPrediction of Type 2 Diabetes using Optimized ANFIS with Genetic Algorithm and Particle Swarm Optimization
This paper proposes two different approaches for the prediction of type2 diabetes. Many different techniques have been used for the prediction of chronic diseases by different researchers. Among them Adaptive Neuro Fuzzy Inference system (ANFIS) is very popular and already used for the prediction of type 2 diabetes. In this paper, the proposed system is optimization of ANFIS using Genetic Algor...
متن کاملPrediction of Methyl Salicylate Effects on Pomegranate Fruit Quality and Chilling Injuries using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network
Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) were investigated for predicting methyl salicylate (MeSA) effects on chilling injuries and quality changes of pomegranate fruits during storage. Fruits were treated with MeSA at three concentrations(0, 0.01 and 0.1 mM) and stored under chilling temperature for 84 days. ANFIS and GA-ANN models ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 210 شماره
صفحات -
تاریخ انتشار 2015